Septone Fibreglass Polish - Superfine ITW (ITW AAMTech) Chemwatch: **6502-78** Version No: **4.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 1 Issue Date: **24/01/2014**Print Date: **24/01/2014**S.GHS.AUS.EN ### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Septone Fibreglass Polish - Superfine | |-------------------------------|---------------------------------------| | Chemical Name | Not Applicable | | Synonyms | Product Code: MPFS500, MPFS18 | | Proper shipping name | Not Applicable | | Chemical formula | Not Applicable | | Other means of identification | Not Available | | CAS number | Not Applicable | ## Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | |--------------------------| |--------------------------| High gloss paste polish without abrasive. ### Details of the supplier of the safety data sheet | Registered company name | ITW (ITW AAMTech) | 1 | |-------------------------|---|---| | Address | 100 Hassall Street Wetherill Park 2164 NSW
Australia | | | Telephone | +61 2 9828 0900 | | | Fax | +61 2 9725 4698 | | | Website | Not Available | | | Email | general@septone.com.au | | ### Emergency telephone number | Association / Organisation | Not Available | | |-----------------------------------|----------------------------|--| | Emergency telephone numbers | 1800 039 008 (24 hours) | | | Other emergency telephone numbers | +61 3 9573 3112 (24 hours) | | #### **SECTION 2 HAZARDS IDENTIFICATION** ### Classification of the substance or mixture $NON-HAZARDOUS\ CHEMICAL.\ NON-DANGEROUS\ GOODS.\ According\ to\ the\ Model\ WHS\ Regulations\ and\ the\ ADG\ Code.$ | Poisons Schedule | | |--------------------|---| | GHS Classification | Not Applicable | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | #### Label elements | Label elements | | |--------------------|----------------| | GHS label elements | Not Available | | | | | SIGNAL WORD | NOT APPLICABLE | ### Hazard statement(s) Not Applicable Precautionary statement(s): Prevention Not Applicable Precautionary statement(s): Response Not Applicable Precautionary statement(s): Storage Not Applicable Precautionary statement(s): Disposal Not Applicable Chemwatch: **6502-78**Version No: **4.1.1.1** Page 2 of 9 Septone Fibreglass Polish - Superfine Issue Date: **24/01/2014**Print Date: **24/01/2014** ## **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|--| | 8052-41-3. | 10-30 | white spirit | | 8008-20-6 | 10-30 | kerosene | | Not Available | 10-30 | other ingredients determined not to be hazardous | | 7732-18-5 | 30-60 | water | ## **SECTION 4 FIRST AID MEASURES** ### Description of first aid measures | • | | |--------------|---| | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | ## Indication of any immediate medical attention and special treatment needed Treat symptomatically. ## **SECTION 5 FIREFIGHTING MEASURES** ## Extinguishing media | ▶ There is no restriction on the type of extinguisher which may be used. | |--| |--| Use extinguishing media suitable for surrounding area. | Special hazards arising from the sub | strate or mixture | |--------------------------------------|-------------------| | | | | Fire Incompatibility | None known. | | |-------------------------|--|--| | Advice for firefighters | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | | Fire/Explosion Hazard | Non combustible. Not considered to be a significant fire risk. Expansion or decomposition on heating may lead to violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Decomposition may produce toxic fumes of: carbon dioxide (CO2) other pyrolysis products typical of burning organic material | | ## **SECTION 6 ACCIDENTAL RELEASE MEASURES** Chemwatch: **6502-78**Page **3** of **9**Issue Date: **24/01/2014**Version No: **4.1.1.1**Print Date: **24/01/2014** #### Septone Fibreglass Polish - Superfine ## Personal precautions, protective equipment and emergency procedures #### Slippery when spilt. Clean up all spills immediately. Avoid contact with skin and eyes. **Minor Spills** Wear impervious gloves and safety goggles. ■ Trowel up/scrape up. ▶ Place spilled material in clean, dry, sealed container. Flush spill area with water. Slippery when spilt. Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment as required. **Major Spills** Prevent spillage from entering drains or water ways. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. Wash area and prevent runoff into drains or waterways. If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the MSDS. ## **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling | Safe handling | Limit all unnecessary personal contact. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. When handling DO NOT eat, drink or smoke. Always wash hands with soap and water after handling. Avoid physical damage to containers. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this MSDS. | |-------------------|--| | Other information | Store below 30 deg. C. I Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this MSDS. | ### Conditions for safe storage, including any incompatibilities | Suitable container | Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. | |-------------------------|---| | Storage incompatibility | None known | ## PACKAGE MATERIAL INCOMPATIBILITIES ## SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION ## Control parameters ## OCCUPATIONAL EXPOSURE LIMITS (OEL) ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|--------------|---------------|-------------|---------------|---------------|------------------| | Australia Exposure Standards | white spirit | White spirits | 790 (mg/m3) | Not Available | Not Available | (see Chapter 16) | ## EMERGENCY LIMITS | Ingredient | TEEL-0 | TEEL-1 | TEEL-2 | TEEL-3 | |--------------|---|---|------------------------------------|---------------------------------| | white spirit | 500 / 300 / 0.2 / 350 / 100 / 171 / 10(ppm) | 500 / 300 / 0.6 / 350 / 100 / 513 / 30(ppm) | 500 / 395 / 200 / 855 /
50(ppm) | 500 / 395 / 1000 /
1250(ppm) | | kerosene | 100 / 0.2(ppm) | 100 / 0.6(ppm) | 400 / 500(ppm) | 400 / 500(ppm) | | water | 500(ppm) | 500(ppm) | 500(ppm) | 500(ppm) | | Ingredient | Original IDLH | Revised IDLH | |--------------|--|--| | white spirit | 29,500(mgm3)10,000 / 10,000 [LEL](ppm) | 20,000(mgm3)1,100 [LEL] / 1,000 [LEL](ppm) | #### **Exposure controls** | Appropriate engineering controls | General exhaust is adequate under normal operating conditions. | |----------------------------------|--| Version No: 4.1.1.1 #### Septone Fibreglass Polish - Superfine Issue Date: 24/01/2014 Print Date: 24/01/2014 #### Personal protection No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE: Safety glasses with side shields Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and Eye and face protection adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent1 Skin protection See Hand protection below No special equipment needed when handling small quantities. Hand protection OTHERWISE: Wear chemical protective gloves, e.g. PVC. See Other protection below **Body protection** No special equipment needed when handling small quantities. OTHERWISE: Other protection Overalls. Barrier cream. Evewash unit. Thermal hazards #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: Septone Fibreglass Polish - Superfine | Material | CPI | |----------------|-----| | BUTYL | А | | NEOPRENE | А | | VITON | A | | NATURAL RUBBER | С | | PVA | С | ^{*} CPI - Chemwatch Performance Index B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required
Minimum
Protection
Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---|-------------------------|-------------------------|---------------------------| | up to 10 x ES | A-AUS | - | A-PAPR-AUS /
Class 1 | | up to 50 x ES | - | A-AUS / Class 1 | - | | up to 100 x ES | - | A-2 | A-PAPR-2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ## Information on basic physical and chemical properties | Appearance | Smooth off-white paste with a slight solvent odour; disperses in water. | | | |----------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|----------------| | | | | | | Physical state | Non Slump Paste | Relative density (Water = 1) | 0.900 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | 7.7 | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Applicable | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 100-250 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | As for water | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | Chemwatch: 6502-78 Version No: 4.1.1.1 Page 5 of 9 Septone Fibreglass Polish - Superfine Issue Date: 24/01/2014 Print Date: 24/01/2014 | | | | i | |---------------------------|----------------|----------------------------------|---------------| | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | 81 w/w | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Miscible | pH as a solution(1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------| | Chemical stability | Presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 TOXICOLOGICAL INFORMATION** | Information on toxicological effects | | | | | | |---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | Inhaled | Acute effects from inhalation of high vapour concentrations may be chest and nasal irritation with coughing, sneezing, headache and even nausea. Inhalation of vapour is more likely at higher than normal temperatures. | | | | | | Ingestion | · · | Accidental ingestion of the material may be damaging to the health of the individual. Ingestion may result in nausea, abdominal irritation, pain and vomiting | | | | | Skin Contact | Ŭ . | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. | | | | | Еуе | Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | | | | | Chronic | Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. | | | | | | | | | | | | | | TOXICITY | IRRITATION | | | | | Septone Fibreglass Polish - Superfine | Not Available | Not Available | | | | | | TOXICITY | IRRITATION | | | | | udito onivit | Inhalation (rat) LC50: >5500 mg/m3/4h | Eye (human): 470 ppm/15m | | | | | white spirit | Oral (rat) LD50: >5000 mg/kg | Eye (rabbit): 500 mg/24h moderate | | | | | | Not Available | Not Available | | | | Not available. Refer to individual constituents. ## for petroleum: TOXICITY Not Available **TOXICITY** Not Available kerosene water WHITE SPIRIT Inhalation (rat) LC50: >5000 mg/m3/4h Oral (rat) LD50: >5000 mg/kg This product contains benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents IRRITATION Not Available IRRITATION Not Available Skin (rabbit): 500 mg SEVERE Carcinogenicity: Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. Mutagenicity: There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays. Reproductive Toxicity: Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed. Chemwatch: 6502-78 Page 6 of 9 Issue Date: 24/01/2014 Version No: 4.1.1.1 Print Date: 24/01/2014 #### Septone Fibreglass Polish - Superfine Human Effects: Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans. white spirit, as CAS RN 8052-41-3 This product contains benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents Carcinogenicity: Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. Mutagenicity: There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays. Reproductive Toxicity: Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed Human Effects: Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans, The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. For "kerosenes' Acute toxicity: Oral LD50s for three kerosenes (Jet A, CAS No. 8008-20-6 and CAS No. 64742-81-0) ranged from > 2 to >20 g/kg. The dermal LD50s of the same three kerosenes were all >2.0 g//kg. Inhalation LC50 values in Sprague-Dawley rats for straight run kerosene (CAS No. 8008-20-6) and hydrodesulfurised kerosene (CAS No. 64742-81-0) were reported to be > 5 and > 5.2 mg/l, respectively. No mortalities in rats were reported to be > 5 and > 5.2 mg/l, respectively. vapor of deodorised kerosene (probably a desulfurised kerosene). Six hour exposures of cats to the same material produced an LC50 of >6.4 mg/l When tested in rabbits for skin irritation, straight run kerosene (CAS No. 8008-20-6) produced "moderate" to "severe" irritation. Six additional skin irritation studies on a range of kerosenes produced "mild" to "severe" irritation. An eye irritation in rabbits of straight run kerosene (CAS No. 8008-20-6) produced Draize scores of 0.7 and 2.0 (unwashed and washed eyes) at 1 hour. By 24 hours, the Draize scores had returned to zero. Eye irritation studies have also been reported for hydrodesulfurized kerosene and jet fuel. These materials produced more irritation in the unwashed eyes at 1 hour than had the straight run kerosene. The eye irritation persisted longer than that seen with straight run kerosene, but by day 7 Straight run kerosene (CAS No. 8008-20-6), Jet A, and hydrodesulfurized kerosene (CAS No. 64742-81-0) have not produced sensitisation when tested in guinea pigs Repeat-Dose toxicity: Multiple repeat-dose toxicity studies have been reported on a variety of kerosenes or jet fuels. When applied dermally, kerosenes and jet fuels have been shown to produce dermal and systemic effects Dose levels of 200, 1000 and 2000 mg/kg of a straight run kerosene (CAS No. 8008-20-6) were applied undiluted to the skin of male and female New Zealand white rabbits. The test material was applied 3x/week for 28 days. One male and one female in the 2000 mg/kg dose group found dead on days 10 and 24 respectively were thought to be treatment-related. Clinical signs that were considered to be treatment-related included: thinness, nasal discharge, lethargy, soiled anal area, anal discharge, wheezing. The high dose group appeared to have a treatment related mean body weight loss when compared to controls. Dose-related skin irritation was observed, ranging from "slight" to "moderate" in the low and high dose groups, respectively. Other treatment-related dermal findings included cracked, flaky and/or leathery skin, crusts and/or hair loss. Reductions in RBC, haemoglobin and haematocrit were seen in the male dose groups. There were no treatment related effects on a variety of clinical chemistry values. Absolute and relative weights for a number of organs were normal, with the following exceptions that were judged to be treatment-related: • increased relative heart weights for the mid- and high- dose males and females, - increased absolute and relative spleen weights in treated females, and - · differences in absolute and relative adrenal weights in both male and female treated animals (considered to be stress-related and therefore, indirectly related to treatment). Gross necropsy findings were confined largely to the skin. Enlarged spleens were seen in the female groups. Microscopic examination of tissues taken at necropsy found proliferative inflammatory changes in the treated skin of all male and female animals in the high dose group. These changes were, in the majority of animals, accompanied by an increase in granulopoiesis of the bone marrow. Four of six high dose males had testicular changes (multifocal or diffuse tubular hypoplasia) that were considered by the study authors to be secondary to the skin and/or weight In a different study, hydrodesulfurised kerosene was tested in a thirteen-week dermal study using KEROSENE Chemwatch: 6502-78 Page 7 of 9 Issue Date: 24/01/2014 Version No: 4.1.1.1 Print Date: 24/01/2014 #### Septone Fibreglass Polish - Superfine Sprague-Dawley rats. Test material was applied 5x/week to the skin of male and female rats at dose levels of 165, 330 and 495 mg/kg. Aside from skin irritation at the site of application, there were no treatment-related clinical signs during the study. Screening of all animals using a functional observation battery (FOB) did not find any substance-related effects. Opthalomological examination of all animals also found no treatment-related effects. There were no treatment-related effects on growth rates, hematological or clinical chemical values, or absolute or relative organ weights. Microscopic examination of tissues from animals surviving to termination found no treatment-related changes, with the exception of a minimal degree of a proliferative and inflammatory changes in the skin. A hydrodesúlfurised middle distillate (CAS no. 64742-80-9) has also been tested in a four week inhalation study. In the study, Sprague-Dawley rats were exposed to a nominal concentration of 25mg/m3 kerosene. Exposures were for approximately 6 hr/day, five days each week for four consecutive weeks. There were no treatment-related effects on clinical condition, growth rate, absolute or relative organ weights, or any of the hematological or clinical chemistry determinations. Microscopic examination found no treatment-related changes observed in any tissues. Carcinogenicity: In addition to the repeat-dose studies discussed above, a number of dermal carcinogenicity studies have been performed on kerosenes or jet fuels. Following the discovery that hydrodesulfurised (HDS) kerosene caused skin tumors in lifetime mouse skin painting studies, the role of dermal irritation in tumor formation was extensively studied. HDS kerosene proved to be a mouse skin tumor promoter rather than initiator, and this promotion required prolonged dermal irritation . If the equivalent dose of kerosene was applied to the skin in manner that did not cause significant skin irritation (eg, dilution with a mineral oil) no skin tumors occurred . Dermal bioavailability studies in mice confirmed that the reduced irritation seen with samples in mineral oil was not due to decreased skin penetration . The effect of chronic acanthosis on the dermal tumorigenicity of a hydrodesulfurised kerosene was studied and the author concluded that hyperplasia was essential for tumor promotion. However, the author also concluded that subacute inflammation did not appear to be a significant factor A sample of a hydrodesulfurised kerosene has been tested in an initiation-promotion assay in male CD-1 mice. Animal survivals were not effected by exposure to the kerosene. The study's authors concluded that the kerosene was not an initiator but it did show tumor promoting activity. *In-Vitro* (Genotoxicity): The potential *in vitro* genotoxicities of kerosene and jet fuel have been evaluated in a variety of studies. Standard Ames assays on two kerosene samples and a sample of Jet A produced negative results with/without activation. Modified Ames assays on four kerosenes also produced negative results (with/without activation) except for one positive assay that occurred with activation . The testing of five kerosene and jet fuel samples in mouse lymphoma assays produced a mixture of negative and positive results . Hydrodesulfurized kerosene tested in a sister chromatid exchange assay produced negative results (with/without activation) In-Vivo Genotoxicity: Multiple in vivo genotoxicity studies have been done on a variety of kerosene-based materials. Four samples of kerosene were negative and a sample of Jet A was positive in in vivo bone marrow cytogenetic tests in Sprague-Dawley rats. One of the kerosene samples produced a positive response in male mice and negative results in females when tested in a sister chromatid exchange assay. Both deodorised kerosene and Jet A samples produced negative results in dominant lethal assays. The kerosene was administered to both mice and rats intraperitoneally, while the jet fuel was administered only to mice via inhalation. Reproductive/Developmental Toxicity Either 0, 20, 40 or 60% (v/v) kerosene in mineral oil was applied to the skin of the rats. The dose per body weight equivalents were 0, 165, 330 and 494 mg/kg. Test material was applied daily, 7 days/week from 14 days premating through 20 days of gestation. There were no treatment-related effects on mortality and no clinical signs of toxicity were observed. There were no compound-related effects on any of the reproductive/developmental parameters. The authors concluded that the no observable effect level (NOEL) for reproductive/developmental toxicity of HDS kerosene under the treatment conditions of the study was 494 mg/kg/day. Developmental toxicity screening studies on a kerosene and a sample of Jet A have been reported . There were no compound-related deaths in either study. While kerosene produced no clinical signs, the jet fuel produced a dose-related eye irritation (or infection). The signs of irritation lasted from 2 to 8 days with most animals showing signs for 3 days. Neither of the test materials had an effect on body weights or food consumption. Examination of offspring at delivery did not reveal any treatment-related abnormalities, soft tissue changes or skeletal abnormalities. The sex ratio of the fetuses was also unaffected by treatment with either of the compounds. WATER No significant acute toxicological data identified in literature search. | Acute Toxicity | Not Applicable | Carcinogenicity | Not Applicable | |-----------------------------------|----------------|--------------------------|----------------| | Skin Irritation/Corrosion | Not Applicable | Reproductivity | Not Applicable | | Serious Eye Damage/Irritation | Not Applicable | STOT - Single Exposure | Not Applicable | | Respiratory or Skin sensitisation | Not Applicable | STOT - Repeated Exposure | Not Applicable | | Mutagenicity | Not Applicable | Aspiration Hazard | Not Applicable | ## **CMR STATUS** CARCINOGEN white spirit Australia Exposure Standards - Carcinogens Carc. 1B #### **SECTION 12 ECOLOGICAL INFORMATION** #### **Toxicity** **DO NOT** discharge into sewer or waterways. #### Septone Fibreglass Polish - Superfine Issue Date: 24/01/2014 Print Date: 24/01/2014 #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------|-------------------------|------------------| | Not Available | Not Available | Not Available | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---------------|-----------------| | Not Available | Not Available | #### Mobility in soil | Ingredient | Mobility | |---------------|---------------| | Not Available | Not Available | ## **SECTION 13 DISPOSAL CONSIDERATIONS** ### Waste treatment methods Product / Packaging disposal - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Management Authority for disposal. - Bury residue in an authorised landfill. - Recycle containers if possible, or dispose of in an authorised landfill. #### **SECTION 14 TRANSPORT INFORMATION** #### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS #### Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code | Source | Ingredient | Pollution Category | Residual Concentration - Outside Special Area (% w/w) | Residual Concentration | |------------------------------------------------------------------|--------------|--------------------|-------------------------------------------------------|------------------------| | IMO MARPOL 73/78 (Annex II) - List of
Other Liquid Substances | white spirit | Not Available | Not Available | Not Available | #### **SECTION 15 REGULATORY INFORMATION** | Safety, health and environmental regulations / legislation specific for the substance or mixture | | | |--|--|--| | white spirit(8052-41-3.) is found on the following regulatory lists | "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)","Australia Exposure Standards","Australia FAISD Handbook - First Aid Instructions, Warning Statements, and General Safety Precautions","IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO","IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk","IMO IBC Code Chapter 17: Summary of minimum requirements", "Australia Hazardous Substances Information System - Consolidated Lists", "Fisher Transport Information", "Australia Inventory of Chemical Substances (AICS)", "International Council of Chemical Associations (ICCA) - High Production Volume List", "OECD List of High Production Volume (HPV) Chemicals", "Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Maritime Dangerous Goods Requirements (IMDG Code), "Belgium Federal Public Service Mobility and Transport, Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (Dutch)", "International Air Transport Association (IATA) Dangerous Goods Regulations", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances", "Sigma-Aldrich Transport Information", "International Chemical Secretaria (Chem Sec) SIN List ("Substitute It Now!)", "Australia High Volume Industrial Chemical List (HVICL)", "Acros Transport Information", "International Fragrance Association (IFRA) Survey: Transparency List", "Australia Therapeutic Goods Administration (TGA) Substances that may be used as active ingredients in Listed medicines", "International Numbering System for Food Additives", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "International Agency for Research on Cancer (IARC) - Agents Reviewed b | | | | "Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)", "Australia FAISD Handbook - First Aid Instructions, Warning Statements, and General Safety Precautions", "Australia Hazardous Substances Information System - Consolidated Lists", "Sigma-AldrichTransport Information", "FisherTransport Information", "Australia Inventory of Chemical Substances (AICS)", "OECD List of High Production Volume (HPV) Chemicals", "Australia High Volume Industrial Chemical List (HVICL)", "Australia Dangerous Goods Code | | kerosene(8008-20-6) is found on the following regulatory lists (ADG Code) - Dangerous Goods List", "Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes", "International Maritime Dangerous Goods Requirements (IMDG Code)", "Belgium Federal Public Service Mobility and Transport, Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2013 (Dutch)","International Air Transport Association (IATA) Dangerous Goods Regulations", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index","International Fragrance Association (IFRA) Survey: Transparency List","Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5", "OSPAR List of Chemicals for Priority Action", "OSPAR National List of Candidates for Substitution - Norway" water(7732-18-5) is found on the following regulatory lists "IMO IBC Code Chapter 18: List of products to which the Code does not apply", "OSPAR National List of Candidates for Substitution – Norway", "Sigma-AldrichTransport Information", "Australia Inventory of Chemical Substances (AICS)", "International Fragrance Association (IFRA) Survey: Transparency List", "OECD List of High Production Volume (HPV) Chemicals", "Australia High Volume Industrial Chemical List | Chemwatch: 6502-78 | Page 9 of 9 | Issue Date: 24/01/2014 | |--------------------|-------------|------------------------| | Version No. 4111 | | Print Date: 24/01/2014 | #### Septone Fibreglass Polish - Superfine | (HVICL)" | |----------| #### **SECTION 16 OTHER INFORMATION** #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.